If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-19x=100
We move all terms to the left:
2x^2-19x-(100)=0
a = 2; b = -19; c = -100;
Δ = b2-4ac
Δ = -192-4·2·(-100)
Δ = 1161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1161}=\sqrt{9*129}=\sqrt{9}*\sqrt{129}=3\sqrt{129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-3\sqrt{129}}{2*2}=\frac{19-3\sqrt{129}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+3\sqrt{129}}{2*2}=\frac{19+3\sqrt{129}}{4} $
| 3.4+4.7y-2.8y=-6.1 | | 491.95=220+1.11x | | 0.99s=10+89s | | y2+1.0515y-0.5893=0 | | (x+1)(x-2)(x-5)=0 | | -2=2x^2-3x+1 | | -2(-3k-4)-7=0 | | 6=-2+4n | | 2(3u=7)=-4(3-2u) | | -5/2=3/4c-7 | | 15-5(4x-7=50 | | 3e-19=-2e-4 | | F(x)=5x-22x=12 | | (2x-7)/12-(4-x)/6=13/20 | | 11w=54-7w | | -3•c=3/20 | | 9+2(4x-3)=-19 | | (X+2)^2+y^2=160 | | 2.8−0.6(x+2)=2x+2(x−0.2) | | 11/28y-5/14=5/14 | | 3(7r-2)=2r-6 | | 2x2+6x+12=0 | | 2x^2-4x-220=0 | | 8/n=12 | | (2x+1)=(8x-2) | | 2x+4(12/7)=8 | | x^2-4x+420=0 | | 36=13n | | 1/2v-8/5=-4/3 | | 2x+7+4x-13=180 | | X^2-2+x^2-1=3x^2 | | 8(x+4)-(x-1)=5x+33+2x |